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Abstract 
This paper describes and  evaluates  three  methods for 
coordinating  multiple  agents.  These  agents  interact  in two 
ways. First, they are  able to work  together to achieve a 
common pool of goals which  would  require  greater  time to 
achieve by any one of the agents  operating  independently. 
Second, the agents share  resources  that  are  required by the 
actions needed to accomplish the goals. TheJirst coordination 
method  described is a centralized  scheme  in  which  all of the 
coordination is done at a central  location  and the agents  have 
no autonomy  at the planning level.  The  second  method 
performs goal allocation  using a centralized  heuristic planner 
and  (distributed) planners for the individual agents perform 
detailed planning. The third  method  uses a contract  net 
protocol to allocate goals and  then  (distributed) planners for 
the individual agents perform detailed planning. We  compare 
these  approaches  and  empirically  evaluate them using a 
geological  science  scenario  in  which  multiple  rovers  are  used 
to sample  spectra of rocks on Mars. 

1. Introduction 

Significant events have recently taken place in the areas of 
space exploration by planetary rovers. The Mars Pathfinder 
and Sojourner missions were major successes, not only 
demonstrating the feasibility of sending rovers to other 
planets, but also demonstrate the utility of such missions to 
the scientific community. Further missions are being 
planned to send robotic vehicles to Mars (MarsO1, Mars03, 
MarsOS), an asteroid (MUSES-CN) ( P L  1999) as well as 
the outer planets and their moons. In order to increase 
science return and enable new types of observations new 
missions are being proposed that employ larger sets of 
robotic workers. Whether it is an unmanned spacecraft 
with remote rovers, or a mix of humans and robotic 
assistants, the command and control task for these 
machines will be complex. While manual request and 
sequence generation was possible for Sojourner, new 
missions will need to automate much of this process. 

While it is up to mission designers to determine the 
optimal number of rovers for a given mission, multiple 
rovers have three types of advantages over single rover 
approaches: force multiplication, simultaneous presence 
and system redundancy. 

Force  multiplication. Multiple rovers can perform 
certain types of tasks more quickly than a single rover, 
such as: performing a geological survey of a region or 
deploying a network of seismographic instruments. 
We call these cooperative tasks. 
Simultaneous  presence. Multiple rovers can perform 
tasks that are impossible for a single rover. We call 
these coordinated tasks. Certain types of instruments, 
such as interferometers, require simultaneous presence 
at different locations. Rovers landed at different 
locations can cover areas with impassable boundaries. 
Using communication relays, a line of rovers can 
reach longer distances without loss of contact. More 
complicated coordinated tasks can also be 
accomplished, such as those involved in hardware 
construction or repair. 
System  redundancy. Multiple rovers can  be used to 
enhance mission success through increased system 
redundancy. Several rovers with the same capability 
may have higher acceptable risk levels, allowing one 
rover, for example, to venture farther despite the 
possibility of not returning. Also, because designing a 
single rover to survive a harsh environment for a long 
periods of time can be difficult, using multiple rovers 
may enable missions that a single rover could not 
survive long enough to accomplish. 

In all cases, the rovers can behave in a cooperative or even 
coordinated fashion, accepting goals for the team, 
performing group tasks and sharing acquired information. 

Whether they are spacecraft, probes or rovers, 
coordinating multiple distributed agents introduces unique 
challenges for automated planning and other supporting 
technology (Mataric 1995; Parker 1998). Issues arise 
concerning interfaces between agents, communication 
bandwidth, group command and control, and onboard 
capabilities. For example, a certain level of 
communication capabilities will need to be assigned to 
each, possibly limiting the amount of information that can 
be shared between the rovers (and ground). The mission 
design will need to include a "chain  of command" for the 
team of spacecrafthovers, indicating which rovers are 
controlled directly from the ground, and which are 
controlled by other rovers or orbiting/landed spacecraft. 
Finally, the onboard Tapabilities will  need to be 
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considered, including computing power and onboard data 
storage capacity. This will limit the level of autonomy each 
of the rovers can have. 

Many of these design issues are related, and all of 
them have an impact on possible automated planning and 
scheduling for the mission. The interfaces determine what 
activities can be planned for each rover. The amount of 
communication available will determine how much each 
rover can share its plan. The control scheme will also 
determine which rovers execute activities in the plans. If 
one rover controls another, the “master” rover will send 
activities from its plan to the “slave” rover for execution. 
Decisions on the onboard capabilities of each rover, 
however, will limit the independence of each rover. With 
little computing power, one rover may be unable to plan 
and  may only be able to execute commands. More power 
may allow it to plan and execute. Still more power may 
allow a rover to plan for itself and other rovers. 

In our approach, we examine the use of Artificial 
Intelligence (AI) planning and scheduling in three different 
control structures to automatically generate appropriate 
low-level rover command sequences to achieve science 
goals. In  the three approaches, we explore a range of 
distribution of the planning function ranging from a 
completely centralized planner to a bidding system in 
which the planning process occurs on each rover in 
parallel. Other approaches to multi-agent planning have 
various degrees of distribution (Mataric 1995; Parker 1998; 
Hagopian, Maxwell, and Reed 1994; Cook, 
Gmystrasiewicz and Holder 1996; Fischer et al. 1995; 
Muller 1996). 

This rest of this paper is organized in the following 
manner. We begin by characterizing the multiple 
cooperating rovers application domain and describe some 
of the interesting challenges. Next, we introduce the 
ASPEN planning and scheduling system and explain how 
automated planning and scheduling techniques can be 
applied to this problem. We discuss several heuristics for 
solving the MTSP problem and present some results on 
how they improve both system and final plan efficiency. 
We then discuss the overall framework that is used to 
achieve a set of geology related science goals. Next, we 
discuss both how to extend this system to provide the long- 
term goal of rover and spacecraft autonomy and how this 
extension compares with related efforts. Finally, we 
present our conclusions and discuss several of the issues 
being addressed in future work. 

2. Baseline Scenario 
We evaluate the architectures presented in this paper using 
the following geological scenario. It takes three steps to 
produce a terrain model and a set of science goals over that 
model. The first step creates different Martian rockscapes 
by using distributions over rock types, sizes and locations. 
Science goals consist of requests to take spectral 
measurements at certain locations or regions. These goals 
can be prioritized so if necessary, low priority goals will be 

deleted first. Upon requesting spectral measurements from 
this terrain during execution, rock and mineral spectral 
models define how to generate sample spectra based on the 
type of rock being observed. 

Science goals are generated from experiments using a 
(machine learning) clustering algorithm that evaluates the 
current spectral data available for a particular landscape 
and then determines new science goals to be achieved. 
Rather than sampling over the spatial distribution of rocks, 
the clustering algorithm generates science goals (i.e. 
spectral readings) that will best classify rock types. 

In each architecture science goals are divided among 
three identical rovers. Each rover has several science 
instruments on board including a camera and a 
spectrometer. Other onboard resources include a drive 
motor, a solar-array panel that provides power for all rover 
activities, and a battery that provides backup power when 
no solar-array power is available. The battery can also be 
recharged using  the solar-array when solar power is not 
being used to capacity. Collected science data is 
immediately transmitted to a lander where it is stored in 
memory. The lander has a limited amount of memory and 
can only receive transmissions from one rover at a time. 
The lander can also upload data (and simultaneously free 
up memory) to an orbiter whenever the orbiter is in view. 

Formulating plans in this scenario involves dividing 
goals between rovers in a method that minimizes the 
amount of driving each rover must perform. Decisions 
must  be  made not only to satisfy the requested goals, but 
also to provide more optimal schedules. When assigning a 
goal to a rover, the architecture must select the best rover 
for the job and decide the order that each rover will 
achieve its assigned goals. These decisions are further 
complicated by the state and resource constraints 
mentioned above. For instance, communication constraints 
between the rover and orbiter may affect when certain 
science operations can be performed. Low priority goals 
may also be deleted if a rover is unable to achieve them 
due  to temporal or resource constraints. 

2.1. ASPEN Planner 

All of our architectures require a planner/scheduler to turn 
abstract science goals into concrete activity schedules, and 
we extend the ASPEN (Fukunaga et al. 1997) application 
framework to satisfy this requirement. Using ASPEN 
involved generating models of the lander and rovers in the 
ASPEN modeling language. This language lets us define 
the set of activities, resources, and state variables as well as 
the interactions and constraints between them. The 
application model essentially defines the types of activities 
and resources that can occur in a given schedule. Figure 1 
shows some examples of activity types for the multiple 
rover domain. A pladschedule is a particular configuration 
of instances of the activity and resource types. Some 
activities are uncontrollable but may have effects that are 
required by other activities. For example, sunrise and 
sunset determine when solar panels are operational. These 



activities are simply loaded at the start of planning. Next, 
the high-level science goals can be inserted into the 
schedule. Typically, these are unexpanded activities that 
have unspecified parameter values, including the start time. 
In addition, goals will usually have unsatisfied 
requirements that can only be resolved with other 
activities. From this, the planner/scheduler must generate a 
plan that has all of these problems resolved. 

Activity  roverl-image { 
i n t   x ,   y ,  z ;  / /  locat ion of image 
Reservations = 

roverl-battery  use 1 0 ,  
roverl-memory use 1000, 
roverl-location must-be < x , y , z > ;  

1 
Activity  roverl-goto { 

i n t  x ,  y,  z ;  / /  l o c a t i o n   t o  go t o  
Reservations = 

roverl-battery  use 1 0 0 ,  
roverl-location change-to < x , y , z > ;  

I 
Figure 1. Rover Activity Definitions 

In ASPEN, unexpanded activities, unspecified 
parameter values, unsatisfied requirements and violated 
constraints are all considered conflicts in the schedule. 
Therefore, the problem becomes one of finding a conflict- 
free schedule. ASPEN has a library of algorithms designed 
to search for a conflict-free schedule. One of the more 
widely used algorithms is based on  a technique called 
“iterative repair” (Zweben et a1 1994). In this algorithm, 
conflicts are classified and addressed in a local, iterative 
fashion. First, a conflict from the set of conflicts is chosen 
for repair. Then, a repair method is chosen as an operation 
for resolving the conflict. Repair methods include moving 
activities, adding new activities, deleting activities, setting 
parameter values, and decomposing activities into 
subactivities. For  each method, other decisions may be 
required. For example, when moving, an activity and 
location must be selected. When setting a parameter, a new 
value must be chosen. After making the appropriate 
decisions, the scheduling operation is performed in hopes 
of resolving the conflict. Finally, the new set of conflicts is 
collected, and the algorithm repeats until no conflicts are 
found, or a user-defined resource bound has been 
exceeded. 

2.2. MTSP Heuristics 

One of the dominating characteristics of the multi-rover 
application is the rover traversals to designated waypoints. 
Decisions must be  made not only to satisfy the requested 
goals, but also to provide more optimal (i.e., efficient) 
schedules. When not considering efficiency, one possible 
schedule that achieves all science goals is to send one rover 
to every target location. However, usually this would not 
be the desired behavior, and therefore some schedule 

optimization must be done. We have chosen to do this 
optimization during the repair process. As certain types of 
conflicts are resolved, heuristics are used to guide the 
search into making decisions that will produce more 
optimal schedules. In other words, when several options 
are available for repairing a conflict, these options are 
ordered based on predictions on how favorable the 
resulting schedule will be. 

The heuristics we have implemented are based on 
techniques from the Multi-Traveling Salesmen Problem 
(MTSP). The Traveling Salesman Problem (TSP) (Johnson 
& McGeoch 1997) is one of finding a minimal tour for a 
salesman that needs to visit a number of cities (and 
typically return home). For MTSP, at least one member of 
a sales team must visit each city such that total traveling 
time is minimized. Salesmen are allowed to travel in 
parallel with each other. 

Many algorithms exist for solving both TSP and 
MTSP problems. For a small number of locations (N<10) 
optimal solutions can be found in a reasonable amount of 
time. However, for larger sets of locations, finding optimal 
solutions is too expensive (NP-hard) and approximate 
algorithms can be used (Hochbaum 1997). Greedy 
techniques can be used to find near optimal solutions in 
polynomial time (Ow2)), where the resulting tour lengths 
have been proven to  be at most rlgN1+1 times the optimal 
length. One such technique involves taking unvisited 
locations and incrementally inserting each into an existing 
planned tour between locations where it would cause the 
smallest increase in tour length. We can easily extend this 
algorithm to multiple travelers. Unvisited locations are 
inserted into any of the tours when looking for the shortest 
tour. 

The multi-rover scenario fits naturally into the MTSP 
class of problems, with only a few differences. First, the 
rovers are typically not required to return to their original 
locations (however, for sample return missions, this would 
be necessary). This is a minor difference and does not 
change the general problem’. Figure 2 shows three possible 
insertions (one from each path) for a new location. Second, 
while planning activities for multiple rovers, one is also be 
concerned with the earliest finish time (i.e., makespan) of 
the schedule. The schedule with the minimum total path 
length (sum of rover path lengths) may not necessarily be 
the schedule where all activities finish the earliest. 
Reducing the total traverse time will reduce wear on the 
rovers, while reducing the makespan will increase the 
available science time. Finally, generating command 
sequences requires reasoning about more than just the 
paths of the rovers. Each rover has a set of flight rules and 
a limited amount of resources. All commands, including 
traverses, must be scheduled in a way that does not violate 
any of the flight rules or resource constraints. Some of 

’ We use the term “path” as opposed to “tour” to distinguish  from 
traversals that retum to the original location. Here, a path is a traversal 
between science waypoints. We do not address path planning for the 
purpose of obstacle  avoidance. 



Figure 2. Traveling  Rovers 

these constraints may inherently require sub-optimal travel 
paths. 

3. Many Architectures  for  Coordination 

In the multi-rover application, activities and  resources are 
modeled for the lander  and  each of the rovers. The lander 
provides the communication link as well as temporary data 
storage. Each  rover  has activities such as traversing, 
turning, taking  images,  taking  spectrometer readings, and 
digging.  Each  rover  has its own resources  such as battery 
power, solar array power,  and  science instruments, and 
state variables representing location and orientation. If  we 
let an ASPEN  process  execute on  both the lander  and  each 
of the rovers, we  have to decide  how to distribute the 
model  across the processes  and  how to coordinate  them. 

While there are many approaches to coordinating a set 
of agents, the two most  common either treats them  as a 
single master  agent directing a set of slaves or treats them 
as a set of competing peers. Actually, these two 
architectures determine a whole  spectrum  of architectures 
where a master  agent  gives its slaves progressively  more 
autonomy. In this section we  describe the two  extreme 
approaches  and an intermediate one.  In each  case the 
collection of ASPEN  processes interact to follow  the 
heuristics characterized by  the greedy insertion MTSP 
algorithm.  While the master can run on the ground,  on an 
orbiter, on  a lander, or on  one of the rovers, we  simplify 
our  presentation by always treat the lander as a master  with 
slave rovers. 

3.1. Centralized  Planning 

The master/slave  approach to automated  planning for 
multiple  agents  involves  using a single centralized planner. 
As  shown in figure 3 ,  planning  and  scheduling for all 
agents is done with a single ASPEN  process  on the lander, 
this approach  only  needs  one  planning  model to represent 
the collection of activities, resources  and constraints 
associated  with  every agent. When  planning  is  complete, 
the relevant  sub-plans (i.e., command  sequences) are 
transmitted  to each “slave”  rover for execution. 

Planner 

I 
:ommands 
goto 2 7 4 . 1 4 1   5 8 1 . 1 4 7   2 0  v 
tu’ 
roc 
got panoramic-spectra tu’ goto - 1 2 . 5 0 4 9   5 . 8 5 7 9 9   - 2 . 1 9 3 7 2  
par t u r n  - 0 . 1 3 6 4 9 2   - 0 . 3 0 9 4 6 1   0 . 3 0 8 7 0 4  
got panoramic-spectra 

goto - 4 9 2 . 5 4   - 1 5 0 . 2 2 5   1 8 . 1 1 3 8  
roc t u r n  - 0 . 7 4 6 4 3 3   - 0 . 5 6 3 2 6 9   0 . 1 5 7 2 6  

r o c k g r o u p - s p e c t r a   1 4 . 0 3 3  

goto 7 . 4 0 2 4 2   - 0 . 7 7 8 3 1 4   4 . 7 9 0 8 2  
t u r n  0 . 0 9 6 4 9 1   - 0 . 3 2 3 3 4 8   0 . 5 2 6 8 6 5  

I r o c k g r o u p - s q e c t r a   9 . ’ / 2 1 2 3  

Figure  3. Centralized  Planning 

Implementing this approach  involves collecting all  of 
the  models  and  adding abstract activities with 
decompositions to determine  which  rover to use for  a 
particular science goal. For instance, there are three ways 
to decompose an abstract activity to take a picture - one 
for each of the rovers. Its decomposition  determines  which 
of the three rovers to use. 

When  generating  command  sequences for multiple 
rovers, ASPEN  uses  two heuristics that implement a 
greedy insertion MTSP algorithm. One is used to select a 
decomposition of  a generic  science goal into a specific 
science activity for one  of the rovers. The other is used to 
select a temporal location for the science activities when 
they are moved.  Both  use the same  evaluation criteria: 
make the selection that results in the shortest path. For the 
decomposition heuristic, this means choosing the rover that 
has the shortest path after including a visit to  the new 
location. For the move heuristic, the  new science activity is 
moved to a time  between  two existing science activities, 
which creates a new path shorter than  any other possible 
new path. 

This  approach  has several advantages  and 
disadvantages.  One  major  advantage is that the planning 
process  is  conceptually simplified. All commands are 
sequenced together, allowing  any interactions to be easily 
checked  and  planned for. Also,  planning  tends to  be 
computationally  expensive  and thus requires significant 



computational power (e.g., a powerful processor). 
Missions may have processing power available at one site, 
but little at other sites (e.g., rovers). On the other hand, a 
centralized planner would be less desirable for a mission 
with evenly distributed processing power. 

A major disadvantage becomes visible when the 
rovers' environment is somewhat unpredictable. Here the 
central planner will also have to monitor execution in order 
to replan activities in response to unexpected failures or 
fortuitous events. This will involve continuously 
transmitting large amounts of data to and from the master 
agent. Finally, this approach has a single point of failure. 
If the agent running the planner is rendered inoperable, 
remote planning will not be possible, and command 
sequences will need to be uploaded from the ground. 

3.2. Central Goal Allocation with Distributed Planning 

To support more advanced missions with multiple 
autonomous rovers, we need to consider distributed 
planning. This would include rovers planning for 
themselves, and for other rovers. If there is a slow 
communication link between rovers, or between rover and 
lander, a planner may be useful on each rover. This would 
eliminate the need to constantly transmit monitoring 
information across the slow communication link. By 
balancing the workload, distributed planning can also be 
helpful when individual computing resources are limited. 
Distributed planning is especially difficult, however, when 
rovers do cooperative or coordinated activities with shared 
resources. This would include, for example, several rovers 
communicating with a single lander. 

As shown in figure 5, one approach to distributed 
planning is to include one planner for each agent, in 
addition to a central planner. The central planner develops 
an abstract plan for all agents, while each agent planner 
develops a detailed, executable plan for its own activities. 
The central planner also acts as a router, taking a global set 
of goals and dividing it up among the agents. For example, 
a science goal may request an image of a particular rock 
without concern for which rover acquires the image. The 
central planner could assign this goal to the rover that is 
closest to the rock in order to minimize the traversals of all 
rovers. When planning with shared resources, aggregate 
resources are divided equally among the agents that use the 
resource. In other words, for N agents, each agent models 
the resource with a capacity that is 1/N of the total 
capacity. For atomic resources, the availability is time- 
sliced among the agents. Each agent has the resource 
available for 1/N of the total time. This guarantees that the 
resulting set of plans will not have conflicts, even among 
interacting activities. 

This approach also has its advantages and 
disadvantages. The obvious advantage is that the planning 
process is distributed across multiple processors. This 
reduces the workload on any one agent and allows 
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Figure 5. Distributed Planning 

planning to be done in parallel. Another major advantage is 
faster reaction time with less communications. With a 
planner onboard the rovers, there is a tight loop between 
planning and execution. This allows shorter turn-around 
times from execution failures to command sequence 
updates, which in turn decreases rover idle time. Also, the 
rovers only have to transmit subsets of their status 
information, and the central goal allocation planner only 
transmits smaller abstract plans to the rovers. The only 
time when the central goal allocation planner has to replan 
occurs when a local planner runs into a situation that it 
cannot resolve. 

The major disadvantage of this approach stems from 
the partitioning of goals and resources from the master to 
the slaves. Once the goals have been assigned, there is no 
way for them to  be reassigned to different rovers. In 
addition, the equal division of shared resources is an 
oversimplification. One rover may need a disproportionate 
amount of a particular resource. This type of resource 
division limits the set of possible solutions, possibly 
forcing plans to be sub-optimal. 

3.3. Contract Net Protocol 

At its extreme, migrating the planning/scheduling process 
onto the rovers leaves a central auctioneer to distribute 
goals, and the rovers use planning/scheduling to determine 
appropriate bids  for each goal as  it arises. This approach is 
an instance of the contract  net  protocol (Smith 1980, 
Sandholm 1993) - a commonly used coordination 
paradigm within the distributed artificial intelligence 
community. Within a contract net protocol, a manager 
announces a task  to a set of contractors, each contractor 
bids for it, and the manager awards the task  to  the 
contractor with the best bid. 
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Figure 6. Contract Net Approach 

As shown in figure 6 ,  implementing the greedy 
insertion MTSP algorithm using a contract net protocol 
involves making the lander take abstract tasks and 
incrementally transmit them to each rover. Upon receiving 
a task, a rover uses an ASPEN process with the MTSP 
heuristics to  try  to fit the  task into its current schedule. 
Upon succeeding, a rover bids the distance it would travel 
upon including the new task. Rovers that fail to insert the 
task within a time limit do not participate in the auction. 
Upon receiving all bids, the lander awards the task  to the 
rover with the smallest bid. The rovers bid the total 
distance in order to minimize the maximum distance 
traveled by any rover. Bidding the incremental distance 
would bias the system toward solutions that minimize the 
sum of the travel distances. 

This approach has many  of the centralized goal 
allocation algorithm's advantages and disadvantages. 
Once again, the planners on the rovers facilitate tight 
feedback between planning and execution without high 
communications overhead, and partitioning the shared 
resources on the lander leads to sub-optimal plans. The 
one difference between the decentralized planning 
approaches involves the information used to partition the 
goals. Where the previous approach ignored resources on 
the rovers and partitioned the goals strictly based on 
expected path distances, the contract net approach 
partitioned goals based on path distances after taking other 
rover resources into account. This change comes at the 
cost of each rover's having to repair its schedule many 
more times in order to compute intermediate path distances 
for partitioning. 

4. Comparisons 

The three approaches presented in this paper for 
coordinating multiple agents have a number of functional 
differences. In addition, these approaches were 
empirically evaluated using a geological scenario for a 
number of different metrics. In this section we describe 
each of these metrics and present the empirical results 
gathered for each approach. 

4.1. Functional Comparison 

One main functional difference between approaches is that 
both the distributed planning approach and contract net 
approach can take advantage of parallel processing while 
the centralized planning approach cannot. For the 
distributed planner, once goals have been allocated to the 
individual agents (rovers), their planners can run in 
parallel. Similarly, in the contract net approach, the 
bidding process can utilize parallel computation by the 
individual planners to compute the cost of achieving an 
additional goal on each rover. 

Another functional comparison is the number of 
communications required in each direction (lander to rover 
(LR), rover to lander (RL)) for each planning cycle for N 
rovers and G goals. In these computations presume that 
the centralized computations are occurring on the lander. 
The centralized planning approach requires N RL and N 
LR communications for respectively collecting the 
individual rovers initial states and distributing the resultant 
plans. The distributed planning approach also requires N 
RL communications (to denote initial rover locations) and 
N LR communications to distribute goal sets. The contract 
net approach requires G iterations, where each iteration 
consists N LR communications (to send out a new goal) 
and N RL communications (to respond with a new plan 
cost). Note that the message sent for a complete plan (as 
required by  the completely centralized approach) is likely 
to be a longer message than for an initial state (as required 
by the centralized approach) or goal set (as required by the 
distributed planning approach). These messages are ldcely 
in turn to  be longer than messages for a goal or a plan's 
cost (required by the contract net approach), or initial state 
(centralized). 

Another functional difference is the degree of 
autonomy offered by an individual rover with respect to 
possible replanning. In the centralized planner approach, a 
failure by a rover that cannot plan would require 
communication with the central planner before resuming 
execution. In the case of the distributed planning or 
contract net approach, if the failure could be planned 
around locally by the failing rover, such communication 
would not be necessary. 

4.2. Empirical Comparisons 

In order to test these different approaches, problems were 
generated from the geological scenario described in 



Section 2 of this paper. In this scenario, science goals are 
for gathering spectral data at different locations with the 
overall goal of classifying different rock types. These 
goals are generated using a machine learning clustering 
algorithm. To produce a good testing set, 10 different 
(random) rockscapes were used. For each rockscape the 
following steps were taken. First, the three rovers are 
placed in different sections of the landscape. Then from 
these initial locations each rover is asked to perform a set 
of panoramic spectral readings to gather initial data about 
the surrounding area. Based on this data the clustering 
system begins to form rock clusters and requests additional 
data readings at particular locations to help better 
discriminate between the different clusters (or rock types). 
This process was run for 20 iterations on each rockscape 
(i.e. 200 total iterations), where an iteration consists of the 
clustering algorithm generating a set of goals and data for 
those goals being gathered and used to further refine the 
rock clusters. In each iteration 12 goals for different 
spectral readings are produced. Thus for each rockscape 
120 different science  goals were produced. 

Using these goal sets, we then ran 10 trials for each of 
the three architectures. In these tests we calculated the 
following statistics (averaged over 200 iterations): 

0 Number of goals achieved (max of 12 per iteration) 
Average distance traveled per goal achieved 

0 Computation time to generate plans (sum and 
makespan) 

Planning time was calculated in two modes for 
distributed planning approach and the contract net protocol 
approach. One mode utilized make-span where it was 
assumed these methods could be run using parallel 
processors. The other mode utilized cumulative planning 
time; thus for the distributed planning approach planning 
time for the master and each rover is summed and for the 
contract net approach, the time for each auction summed. 

The results of these experiments are shown in Table 1. 
The contract net approach outperformed the centralized 
and distributed planning approaches in terms of number of 
goals achieved. This is because the contract net approach 
allows the individual planners to each try to achieve every 
goal - a goal will be deleted only if all rovers cannot plan 
for it. In the distributed planner case the goals are 
distributed before planning attempts are made, if the 
assigned rover cannot achieve a goal, the other rovers do 
not have a chance to try. In the centralized approach, the 
planner may delete the goal (with a certain probability) if it 
is having trouble fitting it into the global plan. Reducing 
this probability would increase the number of goals 
achieved but would also increase the CPU cost. The 
average distance traveled per goal is comparable for all of 
the approaches. Compared to the centralized approach, the 
distributed planning approach incurs a greater cost in total 
computation, but the average makespan of the CPU time is 
lower because it can construct individual plans in parallel. 

The contract net approach uses considerably more CPU 
time because it invokes each of the individual planners G 
times for G overall goals. As stated previously, this is 
likely why the cantract net achieves more goals on 
average. 

Ave# 
CPU Time Time Travel I Goals 
Makespan ZCPU Ave Dist 

Centralized 18.52  18.52 
Planner 
Distributed 121.2  25.07  14.11 
Planner 
Contract 155.89  85.65 

Table 1 : Empirical Comparison of Coordination Methods 

5. Related Work 
While there is a large literature on cooperating robots, most 
of it focuses on behavioral approaches that do not 
explicitly reason about partitioning goals and planning 
courses of action. Two notable exceptions are GRAMMPS 
(Bumitt & Stentz 1998) and MARS (Fischer et al. 1995). 
GRAMMPS is a system coordinating multiple mobile 
robots visiting locations in cluttered partially-known 
environments. This system shares quite a bit similarity 
with our central goal allocation with distributed planning 
architecture. They both solve an MTSP problem to 
distribute targets, and they both have low level planners on 
each mobile robot. The difference involves our focusing 
on multiple resources and exogenous events while their 
focus was on path planning while learning a terrain. Also, 
GRAMMPS uses simulated annealing where we use a 
greedy approach to solving the MTSP problem. 

MARS on the other hand is a cooperative 
transportation scheduling system that shares many 
similarities with our contract net approach. Once again the 
differences involve our focus on multiple resources and 
exogenous events. Also, the transportation agents bid how 
much it costs to add a goal to its path. This resulted in 
minimizing the total distance traveled by all agents. Our 
rovers bid the total path length after inserting the goal. 
This difference made our rovers spread out the goals to 
minimize the maximum distance traveled by any one rover. 
Finally, MARS also provides a “stock market” for 
secondary auctions after the initial assignment of goals. 
Including this facility while reasoning about multiple 
resources is a future research direction. 

6. Conclusions 
This paper has described and evaluates three methods for 
coordinating multiple agents. These agents interact in two 
ways. First, they are able to work together to achieve a 
common pool of goals which would require greater time to 
achieve by any one of the agents operating independently. 
Second, the agents share resources that are required by the 



actions required to accomplish the goals. The first 
coordination method described is a centralized scheme in 
which all of the coordination is done at a central location 
and the agents have no autonomy at the planning level. 
The second method performs goal allocation using a 
centralized heuristic planner and (distributed) planners for 
the individual agents perform detailed planning. The third 
method uses a contract net protocol to allocate goals and to 
(distributed) planners for the individual agents perform 
detailed planning. We compare these approaches and 
empirically evaluate them using a geological science 
scenario in which multiple rovers are used to sample 
spectra of rocks on Mars. 

Acknowledgements 

This work was performed by the Jet Propulsion 
Laboratory, California Institute of Technology, under 
contract with the National Aeronautics and Space 
Administration. Portions of this work were supported by 
the Autonomy Technology Program, managed by Dr. 
Richard Doyle and with Melvin Montemerlo as the 
headquarters program executive, NASA Code SM. 

References 

B. L. Bumitt and A. Stentz 1998. GRAMMPS: A 
Generalized Mission Planner for Multiple Mobile Robots 
In Unstructured Environments. In Proceedings  of  ICRA- 
98. 

D. Cook, P. Gmystrasiewicz, and L. Holder 1996. 
Decision-Theoretic Cooperative Sensor Planning. IEEE 
Transactions on Pattern  Analysis  and  Machine 
Intelligence, 18( 18). 

T. Estlin, S. Hayati, A. Jain, J. Yen, G. Rabideau, R. 
Castano, R. Petras, S. Peters, D. Decoste, E. Tunstel, S. 
Chien, E. Mjolsness, R. Steele, D. Mutz, A. Gray, T. Mann 
1999. An Integrated Architecture for Cooperating Rovers. 
In Proceedings of the  International  Symposium on 
Art&ial  Intelligence  Robotics  and  Automation in Space 
(ISAIRAS), Noordwij-le, The Nztherlands. 

K. Fischer, J. Muller, M. Pischel, and D. Schier 1995, “A 
Model For Cooperative Transportation Scheduling,” in 
Proceedings of the  First  International  Conference on 
Multi-Agent  Systems. San Francisco, CA. 

A. Fukunaga, G. Rabideau, S. Chien, D. Yan 1997. 
Towards an Application Framework for Automated 
Planning and Scheduling. In Proceedings  of  the  1997 
International  Symposium on ArtlJicial  Intelligence, 
Robotics  and  Automation for  Space, Tokyo Japan. 

J. Hagopian, T. Maxwell, and T. Reed 1994. A Distributed 
Planning Concept for Space Station Payload Operations. 

Third  Symposium on Space  Mission  Operations  and 
Ground  Data  Systems, Greenbelt, MD. 

D. Hochbaum 1997. Approximation  Algorithms for  NP- 
hard  Problems, PWS Publishing Company. 

D. Johnson and L. McGeoch 1997. The Traveling 
Salesman Problem: A Case Study in Local Optimization. 
Local  Search in Combinatorial  Optimization, edited by E. 
H. L. Aarts and J. K. Lenstra, John Wiley and Sons, 
London, pp. 215-310. 

JPL 1999. http://www,iol.nasa.gov/missions/ 

M. Mataric 1995. Issues and Approaches in the Design of 
Collective Autonomous Agents. Robotics  and  Autonomous 
Systems, 16 (2-4). pp. 321-331. 

J. Muller 1996, The  Design  of  Intelligent  Agents,  A 
Layered  Approach, Lecture Notes in Artificial Intelligence, 
Springer-Verlag. 

L. Parker 1998. ALLIANCE: An Architecture for Fault 
Tolerant Multi-Robot Cooperation. ZEEE Transactions on 
Robotics  and  Automation, 14 (2). 

G. Rabideau, S. Chien, P. Backes, G. Chalfant, and K. Tso 
1999. A Step Towards an Autonomous Planetary Rover. 
Space  Technology  and  Applications  International  Forum 
(STAZF), Albuquerque, NM. 

T. Sandholm. 1993. An Implementation of the Contract 
Net Protocol Based on Marginal Cost Calculations. In 
Proceedings  of  AAAI-93. 

G. Smith. 1980. The Contract Net Protocol: High-Level 
Communication and Control in a Distributed Problem 
Solver. IEEE  Transactions on Computers, 29( 12). 

http://www,iol.nasa.gov/missions

